\
ELCP _
EEEEEEEEEE e o Refactoring
I D E AN Anshu Dubey
productivity Argonne National Laboratory
'||) better Software Productivity Track, ATPESC 2020
scientific
D software

See slide 2 for
license details

S

€XascCa I e p rOJ e Ct .0 rg “' f E N E RGY SClIeC:Coe National NucA!uumyAdmmg-é:ﬂ:,

License, Citation and Acknowledgements \@ ®]

License and Citation
« This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

* The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Mark C. Miller, Katherine M. Riley,
and James M. Willenbring, Software Productivity Track, in Argonne Training Program for Extreme Scale
Computing (ATPESC), August 2020, online. DOI: 10.6084/m9.figshare.12719834

 Individual modules may be cited as Speaker, Module Title, in Software Productivity Track...

Acknowledgements

« Additional contributors include: Patricia Grubel, Rinku Gupta, Mike Heroux, Alicia Klinvex, Jared O’Neal, David Rogers,
Deborah Stevens

» This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing
Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Administration.

« This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for
the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

« This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S.
Department of Energy under Contract No. DE-AC05-000R22725.

« This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence
Livermore National Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

» This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission
laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Securlty Admlnlstrat|on

under contract DE-NA0003525. I D E A S "‘\\ xmeeaL e

jr—) —) COMPUTING

pr‘OdUCt|V|ty \(PROJECT

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.12719834

Look at the Running Example

Lets say you live in a house with exterior walls made of a single material of thickness, $$L_x$$. Inside the walls are some water
pipes as pictured below.

(00]
A Wall ()
Outside Inside
Overnight Low Constant
40°F ‘\ 70°F
\
Water Pipe
o0
| A% I R
| | | ! ox
0 L,

You keep the inside temperature of the house always at 70 degrees F. But, there is an overnight storm coming. The outside
temperature is expected to drop to -40 degrees F for 15.5 hours. Will your pipes freeze before the storm is over?

Link to the code

https://github.com/betters
cientificsoftware/hello-
numerical-world-atpesc-
2020/blob/main/heatAll.C

 Monolithic code

 Make it modular and
more maintainable

P
\
IDE ﬂs VP e

PROJECT

https://github.com/betterscientificsoftware/hello-numerical-world-atpesc-2020/blob/main/heatAll.C

What is Refactoring

Definition: Refactoring is a disciplined
technique for restructuring an existing
body of code, altering its internal structure
without changing its external behavior.

 Different from development

— You have a working code
— You know and understand the behavior

— You have a baseline that you can use for
comparison

—

’~ \
\) EXASCALE
) COMPUTING

PROJECT

What is Refactoring

Definition: Refactoring is a disciplined

technique for restructuring an existing « General motivations
bc_)dy of code, _alte.rlng its internal structure _ Modularity enhancement
without changing its external behavior. | .

* Improve sustainability
* Different from development — Release to outside users

e Easier to use and understand

— Port to new platforms
» Performance portability

— You have a working code
— You know and understand the behavior

— You have a baseline that you can use for
comparison — Expand capabilities

 Structural flexibility

’~ \
\) EXASCALE
) COMPUTING

PROJECT

Refactoring

An example of workflow with testing

<Start Refactor> l/ Fix Changes [+

No No
R i Finished ves Integration &
egression or o inishe ntegration "
AERGOTEED Unit Test e Yes Refactor? System Tests Passed
A No Yes

< Success! >

A S =\
|D E — \)) sxpseie

pr'OdUCt|V|ty \(PROJECT

Considerations for Refactoring

« Know why you are refactoring
— Is it necessary
— Where should the code be after refactoring

* In heat example

— It is necessary because
 Itis a monolithic code
* No reusability of any part of the code
* Devising tests is hard
» Limited extensibility
— Where do we want to be after refactoring
» Closer to the version that you encountered in math libraries track
* More modular, maintainable and extensible

A S =\
|D E — \) D exoene

pr‘OdUCt|V|ty \(PROJECT

Considerations for Refactoring

« Know the scope of refactoring * What do we do
— How deep a change — Separate out utilities, generalize interfaces
— How much code will be affected — Separate out integration function

e In heat example . :\r/rllag)ligrﬁegnetggcr)ilsinterface to allow alternative
— No capability extension — Create a general build function
— No performance consideration — No new code or intrusive changes

— Cleaner, more maintainable code

A S =\
|D E — \) D exoene

pPOdUCt|V|ty \(PROJECT

Before Starting

* Know your cost estimates * Know your bounds
 Verification — on acceptable behavior change

— Check for coverage provided by — error bounds

existing tests * bitwise reproduction of results unlikely

after transition
— Develop new tests where there are

gaps « Map from here to there

— Make sure tests exist at different
granularities

* There should be demanding integration
and system level tests

Incorporate testing overheads into refactoring cost estimates

A S =\
I D E — \) —) CoMPUTING

pr'OdUCt|V|ty \(PROJECT

Cost estimation

« Can be costly itself if the project is large

* Most projects do a terrible job of estimation
— Insufficient understanding of code complexity
— Insufficient provisioning for verification and obstacles
— Refactoring often overruns in both time and budget

 Factors that can help

— Knowing the scope and sticking to it
« If there is change in scope estimate again

— Plan for all stages of the process with contingency factors built-in

— Make provision for developing tests and other forms of verification
« Can be nearly as much or more work than the code change
» |nsufficient verification incurs technical debt |D E A S

10 productivity

) EXASCALE
COMPUTING
PROJECT

Cost estimation

 Potential for branch divergence
* In the heat example

* Policies for code modification _ No more than a few hours

— Estimate the cost of synchronization of developer time
— Plan synchronization schedule and account for — No disruption
overheads

— No need for a buy-in
 Anticipate production disruption
— From code freeze due to merges

— Account for resources for quick resolution of
merge issues

This is where buy-in from the stake-holders

Is critical =
IDE ‘%S —(\\) D 2oEe
! productivity \ PR

How do we determine what other tests are needed?

« Expose parts of the code that aren’t being tested + Lcov
— gcov - standard utility with the GNU compiler — a graphical front-end for gcov
collection suite (we will use it in the next few slides) — available at
— Compile/link with —coverage & turn off optimization /f;;[:tg\://gtﬁbsourceforge.net/ COVEIgE

— counts the number of times each statement is

— Codecov.io in Cl module
executed

Hosted servers (e.g. coveralls,
* gcov also works for C and Fortran codecov)

— Other tools exist for other languages
— JCov for Java
— Coverage.py for python

graphical visualization of results

push results to server through

continuous integration server
— Devel::Cover for perl

— profile for MATLAB

A S =\
|D E — \) D exoene

12 productivity \(A

Exercise: Refactoring the Running Example

« Convert heatAll.C to the cleaner version with reusable code.
— Though a solution exists and has been given to you your solution need not be identical

— Think about how you want your final product to be and then go through the exercise of
refactoring

» Here | am taking the clean solution that Mark wrote and generalizing the
update_solution interface

— Motivation: Do not want to change heat.C for adding another method
— For this exercise we will use “ftcs” and “upwind15” as alternative options

A S =\
|D E — \) D exoene

3 productivity \(A

Preparing for Refactoring — check coverage

In your working copy add -coverage
as shown below

Run ./heat runame="ftcs_results”
Run gcov heat.C
Examine heat.C.gcov

HDR = Double.H

SRC = heat.C utils.C args.C exact.C ftcs.C upwindl5.C crankn.C
0BJ = $(SRC:.C=.0)

GCOV = $(SRC:.C=.C.gcov) $(SRC:.C=.gcda) $(SRC:.C=.gcno) $(CHDR:.
H=.H.gcov)

EXE = heat

Implicit rule for object files
%.0 : %.C
$(CXX) -c -coverage $(CXXFLAGS) $(CPPFLAGS) $< -o $@

Linking the final heat app
heat: $(0BJ)
$(CXX) -coverage -o heat $(0BJ) $(LDFLAGS) -1m

14

IDEAS

productivity

) EXASCALE
COMPUTING
PROJECT

Preparing for Refactoring — check coverage

* In your working copy add -coverage A dash indicates non-executable line
as shown below

* Run ./heat runame="ftcs_results”
* Run gcov heat.C

A number indicated the times the line
was called

. o #HH# indicates line wasn’t exercised
« Examine heat.C.gcov

143:static bool
144 :update_solution()

: 145: ¢
HDR = Double.H ;. 1l46: if (!strcmp(alg, "ftcs"))
. . 147 return update_solution_ftcs(Nx, curr, last, alpha, dx, dt, bcO®, bcl);
SRC = heat.C utils.C args.C exact.C ftcs.C upwind15.C crankn.C . 1a8- elsel it @lstremp@lg, "upwind15=))
OBJ = $(SRC5-C=-0) : 149: return update_solution_upwindl5(Nx, curr, last, alpha, dx, dt, bcO, bcl);
GCOV = $(SRC:.C=.C.gcov) $(SRC:.C=.gcda) $(SRC:.C=.gcno) $(CHDR:. : 150: else if (!strcmp(alg, "crankn"))
H=.H gCOV)| : 151: return update_solution_crankn(Nx, curr, last, cn_Amat, bcO, bcl);
. : 152: return false;
: 154:
Implicit rule for object files -1 155:static Double
%.0 : %.C : 156:update_output_files(int ti)
g -: 157:
$(CXX) -c -coverage $(CXXFLAGS) $(CPPFLAGS) $< -o $@ : 158:{ Double change;
-: 159:
Linking the final heat app 12?3 1{'f (ti>0 && save)
heat: $(OBJ) ; 162; compute_exact_solution(Nx, exact, dx, ic, alpha, ti*dt, bcO, bcl);
$(CXX) -coverage -o heat $(OBJ) $(LDFLAGS) -1m . 163 : if (savi && ti%savi==0)

164: write_array(ti, Nx, dx, exact);

165:

—_
IDEAS _("\\”_) exescae

15 productivity \ A

16

Preparing for Refactoring — get baselines

 Call to upwind15 not exercised

* Run ./heat alg="upwind15” runame="“upwind_results

SRS - s T atic Anaa
500: 144:update_solution()
. 145:{

500: 146: if (!strcmp(alg, "ftcs"))

#####E: 147 . return update_solution_ftcs(Nx, curr, last, alpha, dx, dt, bcO, bcl);

500: 148: else if (!strcmp(alg, "upwindl5"))
500: 149: return update_solution_upwindl5(Nx, curr, last, alpha, dx, dt, bc@®, bcl);

#####: 150 else if (!strcmp(alg, "crankn"))

. 151 return update _solution_crankn(Nx, curr, last, cn_Amat, bc@O, bcl);

####H . 152 return false;
500: 153:}

154

ave baselines for ftcs and upwind

-We

ahilya:clean dubey$ lsrftcs_results/
clargs.out ftcs _results _soln _00000.curve ftcs _results _soln_final.curve
ahilya:clean dubey$ 1s upwind_results/

clargs.out upwind_results soln _00000.curve upwind results soln_final.curve
ahilya:clean dubey$

A S =\
|D E — \) D exoene

pr'OdUCtl\/'ty \(PROJECT

Refactoring — The starting code

extern bool

update_solution_ftcs(int n,
Double *curr, Double const *last,

| Double alpha, Double dx, Double dt,
Double bc_0, Double bc_1);

if (Istrncmp(alg, "crankn", 6))
initialize_crankn(Nx, alpha, dx, dt, &cn_Amat);

extern bool _ _
update_solution_upwind15Cint n, * Interfaces are not identical

Double *curr, Double const *last,
Double alpha, Double dx, Double dt,

Double bc_0, Double bc_1); * It also has an extra step in initialization

e crankn has an extra argument

extern bool
update_solution_crankn(int n,
Double *curr, Double const *last,
Double const *cn_Amat,
Double bc_0@, Double bc_1);

P
\
IDE ﬂs VP e

PROJECT

Refactoring

 Generalize the interface

extern bool

update_solution(int n,
Double *curr, Double const *last,
Double alpha, Double dx, Double dt,
Double const *cn_Amat,
Double bc_0, Double bc_1);

« Modify the makefile

P
\
|D E ﬂs \}) sxpseie

18 productivity _\(\._ AL

Refactoring

 Generalize the interface

extern bool HDR = Double.H
update_solution(int n, SRC1 = heat.C utils.C args.C exact.C ftcs.C
Double *curr, Double const *last, SRCZ2 = heat.C utils.C args.C exact.C upwindl5.C
Double alpha, Double dx, Double dt, SRC3 = heat.C utils.C args.C exact.C crankn.C
Double const *cn_Amat, 0BJ1 = $(SRC1:.C=.0)
Double bc_0, Double bc_1); 0BJZ2 = $(SRC2:.C=.0)
0BJ3 = $(SRC3:.C=.0)
LXEl = heatl
* Modify the makefile EXE2 = heat2
EXE3 = heat3

P
\
|D E ﬂs \)) sxpseie

19 productivity _\(_ AL

Refactoring

 Generalize the interface

extern bool HDR = Double.H
update_solution(int n, SRC1 = heat.C utils.C args.C exact.C ftcs.C
Double *curr, Double const *last, SRCZ2 = heat.C utils.C args.C exact.C upwindl5.C
Double alpha, Double dx, Double dt, SRC3 = heat.C utils.C args.C exact.C crankn.C
Double const *cn_Amat, 0BJ1 = $(SRC1:.C=.0)
Double bc_0, Double bc_1); 0BJZ2 = $(SRC2:.C=.0)
0BJ3 = $(SRC3:.C=.0)
LXEl = heatl
* Modify the makefile EXE2 = heat?
EXE3 = heat3

« Add null implementations of
initialize crank in ftcs and
upwind15

P
\
|D E ﬂS \)) sxpseie

20 productivity — \(__ AL

21

Refactoring

make heat1
void
initialize_crankn(int n,
Double alpha, Double dx, Double dt,
Double **_cn_Amat)

Run ./heat runame="ftcs_results”
Make heat2

Run ./heat runame="upwind_results”

{

}

bool

update_solution(int n, Double *curr, Double const *last,
Double alpha, Double dx, Double dt,

Double const *cn_Amat,
Double bc_0, Double bc_1)

Verify against baseline

Double const f2 = 1.0/24;
Double const f1l = 1.0/6;
Double const f@ = 1.0/4;
Double const k = alpha * alpha * dt / (dx * dx); =\ I
Double const k2 = k*k; C&“tsy _\(\,__ \) — e

Graphical View of Gcov Output and Tutorials for Code Coverage

Overall Analysis

SOURCE FILES ON BUILD 45

LIST CHANGED SOURCE CHANGED COVERAGE CHANGED

E 74.39 src/functions/linear_fcn_class.fo0 301 82 61

Em src/general/modulo_mod.f90 52 3 3

Detailed Analysis

265 ! Error distribution same for all x values

266 delta = S*Sxx — Sx*Sx

267 if (delta == 0.0_wp) then

268 ERRORMSG("Cannot do linear least-sqrs. Divide by zero.")
269 stop

270 end if

271 delta_inv = 1.0_wp / delta

Online tutorial - https://github.com/amklinv/morpheus
Other example - https://github.com/jrdoneal/infrastructure

P
\
|DE ﬂS — \)_: ExpsCaLe

22 productivity \(A

https://github.com/amklinv/morpheus
https://github.com/amklinv/morpheus

23

More Realistic Example From FLASH

Infrastructure

e Grid
Runtime
Params

— Manages data
— Domain discretization

* Physics
— Several solvers
* Driver
— Time-stepping
— Orchestrates interactions

Physics Monitoring

A S =\
|D E — \) D exoene

pPOdUCt|V|ty \(PROJECT

More Realistic Example From FLASH

Goal: Replace Paramesh with AMReX

FLASH FLASH

Other units Other units
Grid API Grid API

GridMain GridMain
I :> : Changes and new

l I implementation

P
\
IDE ﬂs VP e

PROJECT

Considerations

« Cost estimation
— Expected developer time
— Extent of disruption in production
schedules

* Get a buy-in from the
stakeholders

— That includes the users

— For both development time and
disruption

25

* In FLASH

— Initial estimate at 6-12 months
— Took close to 12 months

FLASH
Version
4.4

AMReX
Mesh

|

AMReX
V][]

Fine-coarse
Require- T
ments | i Flux correction
gathering New a ternat.lve
Implementation
Interfaces) TOp-leyeI
Iterators over interaction
Data b h
Structures arames |

Iterators

Simple
Hydro

Hydro Driver

From
Old
FLASH
Unsplit
Hydro

Simple
Hydro

) EXASCALE
COMPUTING
PROJECT

26

FLASHS

Refactoring for Next Generation Hardware

AMReX - Lawrence Berkeley National Lab
» Designed for exascale

* Node-level heterogeneity

* Smart iterators hide parallelization

Goal: Replace Paramesh with AMReX

Plan: Getting there from here
* On ramping

* Design

* Intermediate steps

* Realizing the goal

FLASH

Grid API

|
GridMain

Other units

FLASH

Grid API

GridMain

ﬂ-i-

Paramesh

Paramesh
AMReX

Other units

—
"~ \
\ EXASCALE

) —) COMPUTING
PROJECT

Map from Here to There: On ramp plan

—— = = Scattered independent
= changes - May be OK
All at once B

Invasive large-scale

—) change in the code -
Bad idea
All at once
IDEAS &P s

On ramp plan

So how should it be done

» Incrementally if at all possible -

= Small components, verified

individually = Alternatively migrate
= Migrated back, integration tests them into new
done infrastructure

—
"~ \

\) EXASCALE

) COMPUTING

PROJECT

IDEAS

28 productivity _\(\-

Map From Here to There

 Paramesh & AMReX coexist
« Adapt interfaces to suit AMReX [

Fine-coarse
Require- |
» Refactor Paramesh NS\ ermatve Flux cotrectio
implementation fLas | Tt implementation
version Interfaces Iterators over iggea:g;’iiln
- Compare AMReX implementation | ™ Stwuctures Paramesh |
against Paramesh implementation 'teraf""’ ! rivdro Driver [l
Oold
FLASH
Simple Unsplit
Hydro Hydro

P
\
IDE ﬂS —(CP =

PROJECT

Refactoring plan

AMReX
Design Mesh
« Degree & scope of change | | Fine-coarse
Require- 1
* Formulate initial requirements satherng New alternative Flux correction
FLASH Implementation oo evel
i rsion nterfaces _lop-leve
PI"OtOtyplng Ve4?4o ! tDafta Iterators over Interaction
Structures Paramesh 1
« Explore & test design decisions 'te“it‘”s 1 i B o
. Old
« Update requirements FLASH
Simple Unsplit
Implementation Hydro Al

« Recover from prototyping

« Expand & implement design decisions

P
\
IDE ﬂS —(CP =

PROJECT

Phase 1 - design

AMReX
Mesh

AMReX
Mesh

|

AMReX
Mesh

Fine-coarse
Require-] 1
. . . . g ments ew alternative ux correction
 Derive and understand principal definitions & s | e
. Version Interfaces _op-ieve
abstractions T o

Iterators Hydro Driver

From

|
e Collect & understand Paramesh/AMReX ‘ a5
constraints Smple g

— Generally useful design due to two sets of constraints?

« Collect & understand physics unit requirements on
Grid unit

« Design fundamental data structures & update
interface

P
\
|DE ﬂS — \)_: ExpsCaLe

31 productivity \(A

Phase 2 - prototyping

AMReX
Mesh

AMReX AMReX
Mesh Mesh

Fine-coarse

Implement new data structures

— Evolve design/implementation by iterating between Param Rﬁ?e‘#'tr? Flx comection
FLASH gathering Fﬁ:;fféfﬁ&?iﬁ.’li
ersion nterfaces op-level
« Explore Grid/physics unit interface T
Structures

Iterators Hydro Driver

From
old
FLASH
Simple Unsplit
Hydro Hydro

— simpleUnsplit Hydro unit

— A simplified implementation smple

Hydro

* No need to be physically correct

» Exercise the grid interface identically to the real solver

Discover use patterns of data structures and Grid unit interface

Adjust requirements & interfaces

P
\
|DE ﬂS — \)_: ExpsCaLe

32 productivity \(A

33

Phase 3 - implementation

» Derive & implement lessons learned
— Clean code & inline documentation

» Update Unsplit Hydro

* Hybrid FLASH

— AMReX manages data
— Paramesh drives AMR

 Fully-functioning simulation with AMReX

 Prune old code

FLASH
Version
4.4

AMReX AMReX AMReX
Mesh Mesh Mesh

Reqwre
ments
gathering New alternative
Implementation
Interfaces
Data Iterators over
Structures Paramesh

Iterators

Simple Simple
Hydro Hydro

Flne coarse

Flux correctlon

Top-level
interaction

|

Hydro Driver

Unsplit
Hydro

From
Old
FLASH

) EXASCALE
COMPUTING
PROJECT

34

Important Takeaways

* Developers should know what the end code should be
— They will do the code implementation

— You may need to develop some possibly throwaway code
» Often that ends up being useful in unexpected ways

Process and policies are important
* Managing branch divergence

* Any code pruning

« Schedule of testing

« Schedule of integration and release
— Release may be external or just to the internal users

IDEAS

productivity

) EXASCALE
COMPUTING
PROJECT

35

Other resources

Software testing levels and definitions:
— http://www.tutorialspoint.com/software testing/software testing levels.htm

Working Effectively with Legacy Code, Michael Feathers.

— The legacy software change algorithm described in this book is very straight-forward and powerful for
anyone working on a code that has insufficient testing.

Code Complete, Steve McConnell. Includes testing advice.

Software Carpentry: http://katyhuff.github.io/python-testing/

Tutorial from Udacity: https://www.udacity.com/course/software-testing--cs258

Papers on testing:
— http://www.sciencedirect.com/science/article/pii/S0950584914001232

— https://www.researchgate.net/publication/264697060 Ongoing verification of a multiphysics communi
ty code FLASH

Resources for Trilinos testing:
— Trilinos testing policy: https://github.com/trilinos/Trilinos/wiki/Trilinos- Testing-Policy
— Trilinos test harness: htips://github.com/trilinos/Trilinos/wiki/Policies--%7C-Testing

P
\
|D E ﬂS \)) sxpseie

productivity _\(__ SRoeeT

http://www.tutorialspoint.com/software_testing/software_testing_levels.htm
http://katyhuff.github.io/python-testing/
https://www.udacity.com/course/software-testing--cs258
http://www.sciencedirect.com/science/article/pii/S0950584914001232
https://www.researchgate.net/publication/264697060_Ongoing_verification_of_a_multiphysics_community_code_FLASH
https://github.com/trilinos/Trilinos/wiki/Trilinos-Testing-Policy
https://github.com/trilinos/Trilinos/wiki/Policies--%7C-Testing

TO HAVE GOOD OUTCOME FROM REFACTORING
KNOW WHY

KNOW HOW MUCH

KNOW THE COST

PLAN

HAVE STRONG TESTING AND VERIFICATION
GET BUY-IN FROM STAKEHOLDERS

P’ (e

IDEAS E\(\é\\)p

productivity

Agenda
Time (Contral T2) | Module [Topie —————————————[speaker

9:30am-9:45am 00 Introduction David E. Bernholdt, ORNL
9:45am-10:15am 01 Overview of Best Practices in HPC Software Development Katherine M. Riley, ANL
10:15am-10:45am 02 Agile Methodologies James M. Willenbring, SNL
10:45am-11:00am 03 Git Workflows James M. Willenbring, SNL
11:00am-11:15am Break (and Q&A with speakers)

11:15am-12:00pm 04 Software Design Anshu Dubey, ANL
12:00pm-12:45pm 05 Software Testing Anshu Dubey, ANL
12:45pm-1:45pm Lunch (and Q&A with speakers)

1:45pm-2:00pm 06 Agile Methodologies Redux James M. Willenbing, SNL
2:00pm-3:00pm 07 Refactoring Anshu Dubey, ANL
3:15pm-3:45pm 08 Continuous Integration Mark C. Miller, LLNL
3:45pm-4:30pm 09 Reproducibility David E. Bernholdt, ORNL

4:30pm-4:45pm 10 Summary David E. Bernholdt, ORNL

